Control of scroll-wave turbulence using resonant perturbations.

نویسندگان

  • S W Morgan
  • I V Biktasheva
  • V N Biktashev
چکیده

Turbulence of scroll waves is a sort of spatiotemporal chaos that exists in three-dimensional excitable media. Cardiac tissue and the Belousov-Zhabotinsky reaction are examples of such media. In cardiac tissue, chaotic behavior is believed to underlie fibrillation which, without intervention, precedes cardiac death. In this study we investigate suppression of the turbulence using stimulation of two different types, "modulation of excitability" and "extra transmembrane current." With cardiac defibrillation in mind, we used a single pulse as well as repetitive extra current with both constant and feedback controlled frequency. We show that turbulence can be terminated using either a resonant modulation of excitability or a resonant extra current. The turbulence is terminated with much higher probability using a resonant frequency perturbation than a nonresonant one. Suppression of the turbulence using a resonant frequency is up to fifty times faster than using a nonresonant frequency, in both the modulation of excitability and the extra current modes. We also demonstrate that resonant perturbation requires strength one order of magnitude lower than that of a single pulse, which is currently used in clinical practice to terminate cardiac fibrillation. Our results provide a robust method of controlling complex chaotic spatiotemporal processes. Resonant drift of spiral waves has been studied extensively in two dimensions, however, these results show for the first time that it also works in three dimensions, despite the complex nature of the scroll wave turbulence.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

eriodic forcing of scroll rings and control of Winfree turbulence n excitable media

By simulations of the Barkley model, action of uniform periodic nonresonant forcing on scroll rings and wave turbulence in three-dimensional excitable media is investigated. Sufficiently strong rapid forcing converts expanding scroll rings into the collapsing ones and suppresses the Winfree turbulence caused by the negative tension of wave filaments. Slow strong forcing has an opposite effect, ...

متن کامل

Effect of resonant magnetic perturbations on secondary structures in drift-wave turbulence

Recent experiments showed a decrease of long range correlations during the application of resonant magnetic perturbations (RMPs) [Y. Xu et al., Nucl. Fusion 51, 063020 (2011)]. This finding suggests that RMPs damp zonal flows. To elucidate the effect of the RMPs on zonal structures in drift wave turbulence, we construct a generalized Hasegawa-Wakatani model including RMP fields. The effect of t...

متن کامل

Scroll Wave Turbulence

Figure 1: Scroll wave turbulence developed from a scroll with a curved filament. Simulation of FitzHugh-Nagumo model in 3D, parameters as in (Biktashev 1998). Red surfaces are fronts (u=0,v<0) blue surfaces are backs (u=0,v>0) of excitation waves, and yellow lines are singularities (u=0,v=0)rotating around slowly moving scroll filaments, where u,v are respectively the activator and inhibitor fi...

متن کامل

On the performance of anisotropic mesh adaptation for scroll wave turbulence dynamics in reaction-diffusion systems

Nonlinear reaction-diffusion systems are widely employed to study the spatio-temporal chaotic behavior that occurs in excitable media such as cardiac tissue where sufficiently strong perturbations can excite nonlinear propagating waves which can form spiral waves in two dimensions or scroll waves in three dimensions. The numerical simulation of these waves calls for grids that are extremely fin...

متن کامل

Co-current toroidal rotation driven and turbulent stresses with resonant magnetic perturbations in the edge plasmas of the J-TEXT tokamak

The acceleration of the co-current toroidal rotations around resonant surfaces by resonant magnetic perturbations (RMPs) through turbulence is presented. These experiments were performed using a Langmuir probe array in the edge plasmas of the J-TEXT tokamak. This study aims at understanding the RMP effects on edge toroidal rotations and exploring its control method. With RMPs, the flat electron...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Physical review. E, Statistical, nonlinear, and soft matter physics

دوره 78 4 Pt 2  شماره 

صفحات  -

تاریخ انتشار 2008